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Abstract

A high-order finite-volume algorithm is developed for the Fokker–Planck Operator (FPO) describing Coulomb colli-
sions in strongly magnetized plasmas. The algorithm uses a generic fourth-order reconstruction scheme on an unstructured
grid in the velocity space spanned by parallel velocity and magnetic moment. By analytically mapping between different
coordinates, it produces an accurate and density-conserving numerical FPO for an arbitrary choice of velocity space coor-
dinates. A linearized FPO in constants-of-motion coordinates is implemented as an example of the present algorithm com-
bined with a cut-cell merging procedure. Numerical tests include the thermalization of a test distribution with a
background Maxwellian at a different temperature, and the return to isotropy for a distribution initialized with a velocity
space loss-cone. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Trubni-
kov–Rosenbluth potentials.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The differential Fokker–Planck Operator (FPO) describes the particle collisions in a fully ionized plasma
through shielded electrostatic Coulomb fields. Such Coulomb collisions are important in many systems,
including laboratory plasma physics devices for basic studies, magnetic and inertial fusion, industrial material
processing, and astrophysics. In magnetized plasma, because of the gyro-motion of the charged particles
around magnetic field lines, the FPO is typically written in spherical coordinates spanned by ðv; h;/Þ, where
v is the particle speed, h is the pitch angle and / the gyro-angle. For strong magnetic fields, many physical
phenomena have characteristic time scales much longer than the gyro-period, and characteristic length scales
much larger than the gyro-radius. In such cases, a gyro-averaging procedure may be applied and the resulting
distribution function becomes independent of gyro-angle /. By further using a series expansion with Legendre
polynomials Lnðcos hÞ in the h direction, the evaluation of FPO is reduced to solving a series of one-dimen-
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sional equations of v only [1,2]. Following this approach, Chang and Cooper [3] developed a finite difference
scheme that conserves particle number density. This scheme was further extended by Epperlein [4] to conserve
particle energy. Khabibrakhmanov and Khazanov [5] have recently solved these equations using a spectral
collocation method.

The velocity coordinates ðv; hÞ, though convenient for evaluating the FPO, are not particularly suitable for
simulating spatially inhomogeneous plasmas where particle advection, including parallel streaming and per-
pendicular drifts, is important. To accurately compute the particle orbits, the velocity coordinates are often
determined by the particular choice of the spatial advection schemes. In such cases, the FPO needs to be eval-
uated in the same coordinates and its discretization becomes truly two-dimensional. Chacon et al. [6] proposed
a tensor formulation for two-dimensional FPO and studied the finite difference scheme in cylindrical coordi-
nates for improved energy conservation. Other algorithms dealing with non-isotropic, multi-dimensional
FPOs use Cartesian velocity coordinates directly [7,8]. Cartesian coordinates, however, are almost never used
directly for strongly magnetized plasmas owing to the usefulness of averaging over the rapid particle gyro-
motion to remove one dimension from the computation. Recent attempts to couple the FPO with the Vlasov
equation in different velocity coordinates have ignored the spatial dependence of the distribution function in
the collision operator [9,10].

The so-called constants-of-motion coordinates, e.g. the total energy E and the magnetic moment l, have
been used in gyrokinetic simulations of fusion plasma with both particle [11] and continuum [12] formulations.
For these simulations, it is critical that the passing and trapped particle orbits are accurately represented. The
choice of ðl;EÞ coordinates is advantageous because ðl;EÞ remain constant along particle orbits (in the absence
of collisions and time-varying fields), and the velocity coordinates ðl;EÞ are thus orthogonal to the spatial
coordinates. For instance, the collisionless Vlasov equation is particularly simple when written in ðl;EÞ coor-
dinates. To compute collisional effects accurately, the same constants-of-motion coordinates should be used in
the FPO as well. The approach of using direct interpolation of the collision operator between different velocity
coordinates has been found unsatisfactory, particularly with respect to the conservation properties. In this
paper, we present an algorithm for computing the FPO in constants-of-motion coordinates based on a generic
high-order finite volume scheme on unstructured grids, which is inherently particle-number-conserving.
Although focusing on the constants-of-motion coordinates in this paper, our goal is to develop a numerical
FPO that is accurate, conservative and easily applied to different coordinates systems.

The strategy is to first choose a convenient but fixed coordinate system, e.g. in this case ðvk; lÞ, and then
evaluate the FPO in these coordinates using a conservative, high-order finite volume scheme on a unstructured
mesh. Here vk is the velocity along the magnetic field. The finite volume discretization is inherently density
conserving, and an unstructured mesh decouples the choice of coordinates and the gridding strategy. In this
way, different velocity coordinates can be mapped directly onto the chosen ðvk; lÞ coordinates, with a regular
grid in the former typically becoming an irregular and unstructured grid in the latter. After the mapping, the
solution we obtain still maintains high-order accuracy and good conservation properties. In this sense, the
evaluation of the FPO is independent of the choice of velocity coordinates, and the constants-of-motion coor-
dinate set is but one such choice. For simplicity, the method is illustrated using a linearized FPO, where the
collision diffusion coefficients are known by assuming the background particle distribution to be Maxwellian.
For the nonlinear FPO, the diffusion coefficients need to be obtained first by solving Trubnikov–Rosenbluth
potentials [13], which is an important but rather independent problem and shall be dealt with separately. Once
the diffusion coefficients are known, the algorithm described here applies to the nonlinear FPO directly.

The remainder of the paper is organized as follows: the formulation of the FPO in ðvk; lÞ coordinates is
given in Section 2 both for nonlinear and linearized cases. The high-order finite volume scheme on a general
unstructured mesh is presented in Section 3. In Section 4, we describe the cut-cell method in ðl;EÞ space, and
the choice of stencils for finite volume reconstruction. The numerical tests are presented in Section 5, and the
concluding remarks are given in Section 6.

2. Fokker–Planck collision operator

Here the general Fokker–Planck collision operator is given in ðvk; lÞ coordinates, followed by the linearized
version about a fixed Maxwellian distribution function describing the background field particles.
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2.1. General form

Following Trubnikov [13], the Fokker–Planck collision operator C, written in a divergence form is,
ofa

ot

����
c

¼ CðfaÞ ¼
X

b

Ca=bðfaÞ ¼ �
X

b

oSa=b
i

ovi
; ð1Þ
where fa is the particle distribution function, and Sa=b is the flux of ‘test’ particles of species a due to collisions
with ‘field’ particles of species b (including b ¼ a). The flux Sa=b consists of a friction term and a diffusion term:
Sa=b
i ¼ F a=b

i

ma
fa � Da=b

ik

ofa

ovk
: ð2Þ
Using the so-called Trubnikov–Rosenbluth potentials [1,13], we can write
F a=b
i

ma
¼ �ma

mb
nbK

a=b ohb

ovi
; Da=b

ik ¼ �nbK
a=b o2gb

oviovj
; ð3Þ
where Ka=b is defined as
Ka=b ¼ Kc

4pZaZbe2

ma

� �2

; ð4Þ
and Kc ¼ logð8pðnek
3
DÞÞ is the Coulomb logarithm, kD is the Debye length and ne is the electron density; m is

the particle mass, n is the number density, e is the fundamental unit charge, and Z is the ion charge number.
The Trubnikov–Rosenbluth potentials are defined as
hb ¼ � 1

4p

Z
fbð~v0Þ
j~v�~v0j d~v

0; gb ¼ � 1

8p

Z
j~v�~v0jfbð~v0Þd~v0; ð5Þ
where the distribution function is normalized such that its velocity integral is unity. Using the identities,
r2
v j~v�~v0j ¼

2

j~v�~v0j ; r2
v

1

j~v�~v0j ¼ �4pdð~v�~v0Þ; ð6Þ
it is easily established that
r2
vgb ¼ hb; r2

vhb ¼ fb: ð7Þ
2.2. vk � l coordinates

For magnetized plasmas, the parallel velocity vk is along the direction of the local magnetic field line and the
magnetic moment is defined as l ¼ ma

2B v2
?, where B is the local magnetic field strength and v? is the perpendic-

ular velocity. Note that vk and l are a convenient choice for velocity space coordinates for magnetized plasmas
after gyro-averaging, because l is a constant of motion, and vk, unlike E, makes f a single-valued function in
velocity space. The Jacobian of the ðvk; lÞ coordinates is a constant. Moreover, the conservative form of the
Vlasov equation can be simply expressed in ðvk; lÞ space.

Ignoring the gyro-angle dependence, the resulting axisymmetric FPO can be written in ðvk; lÞ coordinates
as,
CðfaÞ ¼
oCvk

ovk
þ oCl

ol
; ð8Þ
where the fluxes Cvk and Cl are defined as
Cvk ¼ Dvfa þ Dvv
ofa

ovk
þ Dvl

ofa

ol
; ð9Þ

Cl ¼ Dlfa þ Dlv
ofa

ovk
þ Dll

ofa

ol
; ð10Þ
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and the coefficients are given by
Dv ¼ nbK
a=b ma

mb

ohb

ovk
; ð11Þ
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; ð12Þ
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The Trubnikov–Rosenbluth potentials satisfy
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Eqs. (8)–(18) constitute the general nonlinear FPO in ðvk; lÞ coordinates.

2.3. Linearization

The nonlinear FPO (8)–(18) may be linearized if the collisions between test particles and background par-
ticles are more important than collisions among the test particle themselves. Moreover, this approximation is
useful if the background plasma is maintained close to a Maxwellian, i.e.
fbðvÞ ¼ F b
MðvÞ ¼ ð

ffiffiffi
p
p

vtbÞ�3 expð�v2=v2
tbÞ; ð19Þ
where vtb ¼ ð2T b=mbÞ
1
2 is the thermal velocity of field particles, and T b is its mean temperature.

In such cases, the Trubnikov–Rosenbluth potentials depend only on the particle speed v, i.e. hb ¼ hbðvÞ and
gb ¼ gbðvÞ, where
v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
k þ 2lB=ma

q
: ð20Þ
As a result, the derivatives of h and g are
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where the error function GðxÞ, and function HðxÞ are defined as
GðxÞ ¼ 2ffiffiffi
p
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Z x

0
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The coefficients in (9) and (10) are now given by
eDv ¼ nbK
a=b ma
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v

dhb

dv
; ð25Þ
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Eqs. (8)–(10) with relations (25)–(30) constitute the linearized FPO in ðvk; lÞ coordinates.

3. Finite volume discretization

3.1. General formula

To solve the FPO numerically, consider a fixed partition of the ðvk; lÞ plane by a set of non-overlapping
polygonal sub-domains Xi, i ¼ 1; . . . ;N , each constituting a cell. Within each cell Xi, the Fokker–Planck
equation
of
ot

����
c

¼ r � C ¼
oCvk

ovk
þ oCl

ol
ð31Þ
can be integrated using Gauss’ theorem to obtain the basic form of the finite-volume discretization,
ofi

ot

����
c

¼ 1

V i

X
j2oXi

Z
ðC � njÞdSj where �f i ¼

1

V i

Z
Xi

f dv: ð32Þ
Here �f i is the cell-averaged value of distribution function f on cell i, with V i and oXi being its volume and
boundary. The �f i are the fundamental variables solved in the finite volume method, and their rates of change
are determined by the fluxes across the cell edges. To evaluate the fluxes Cvk and Cl in (9) and (10), we need the
point-wise values of f and its derivatives on the cell edges. Thus a central piece of the finite-volume algorithm
is the so-called reconstruction, that is, determining the point-wise values of f ðvk; lÞ from the known cell-aver-
aged values �f i.

The reconstruction algorithm uses the cell-averaged function value on a given cell, and those of the neigh-
boring cells, to form a local approximation to f ðvk; lÞ in such a way that when this approximate function is
averaged over any cell involved, the known cell-averaged value is recovered. Hence let us assume f to be a
generic function of vk and l, and we can approximate f in the neighborhood of a cell p by a polynomial of
vk and l, i.e.,
fpðvk; lÞ �
Xn

i¼0

Xn�i

j¼0

aijðvk � vkoÞiðl� loÞ
j
: ð33Þ
Here n is the desired order of the approximating polynomial, and aij are the unknown coefficients. For a given
order n, the total number of the coefficients aij is ðnþ 1Þðnþ 2Þ=2. The set ðvko; loÞ is an appropriately chosen
reference point. Here we observe that if fp is a unique approximation based on ðvko; loÞ, i.e., given all the aij

determined uniquely, then it can be equivalently written for another reference point ðv0ko; l0oÞ. The new coeffi-



Z. Xiong et al. / Journal of Computational Physics 227 (2008) 7192–7205 7197
cients will become a0ij ¼ a0ijðamn; vko; v0ko; lo; l
0
oÞ, but fp itself remains the same, i.e., the choice of ðvko; loÞ is not

essential to the approximation. Consequently, we select the origin vko ¼ lo ¼ 0 as a convenient choice and is
used throughout the paper. The advantage of a unique origin will be seen in the next section.
3.2. High-order reconstruction

To obtain an accurate representation of the FPO with modest grid resolution, we choose a fourth-order
approximation, n ¼ 4. Therefore 15 coefficients aij need to be determined in (33). To simplify the notation,
we reorder the aijs by a subscript k, where k ¼ 0; . . . ; 14, and for each k, the corresponding exponents of vk
and l are denoted as ik and jk, where ik þ jk 6 n. So each ak is the coefficient of a base polynomial of order
ik þ jk. To determine ak on a particular cell, we first construct a stencil consisting of cell p and its 14 neigh-
boring cells. The construction of such a stencil is discussed in detail in Section 4.2. Once the stencil is chosen,
integrating (33) over each cell of the stencil yields a system of linear equations for the ak:
Bmk ak ¼ �f m; m; k ¼ 0; 1; . . . ; 14; ð34Þ

where the matrix Bmk ¼ ½bmk�, and bmk is given by
bmk ¼
1

V m

Z
Xm

vik
k l

jk dvk dl; where V m ¼
Z

Xm

dvk dl: ð35Þ
Here bmk is the cell averaged value of the kth base polynomial on the mth cell. Note that the bmk depends only
on the metrics of the mth cell but not on �f m. More importantly, the value of bmk is independent of the specific
stencil used. This results from the fact that all the polynomials in bmk are based on a unique global origin (see
discussion in Section 3). Thus each bmk needs to be computed only once.

To evaluate bmk on a cell, we use the simplex of a 2D plane, a triangle, because any polygonal cell can be
divided into one or several triangles (in 3D it is a tetrahedron). It suffices to integrate the base polynomials
over a simplex. Let D ¼ fðvk0; l0Þ; ðvk1; l1Þ; ðvk2; l2Þg be such a simplex; then for fourth-order accuracy, we
use the 16-point Gaussian quadrature
Z

M

f ðvk; lÞdvk dl ¼
X15

i¼0

wif ðvki; liÞ ¼ J
X15

i¼0

wif ðevki; eliÞ; ð36Þ
where the ð ~vk; ~lÞ are the Gaussian abscissa in the standard triangle at (0, 0), (0, 1) and (1, 0). The transforma-
tion between ðvki; liÞ and ðevki; eliÞ is given by
vki ¼ vk0 þ ðvk1 � vk0Þevki þ ðvk2 � vk0Þ eli ð37Þ
li ¼ l0 þ ðl1 � l0Þevki þ ðl2 � l0Þ eli : ð38Þ
Here J ¼ jðvk1 � vk0Þðl2 � l0Þ � ðvk2 � vk0Þðl1 � l0Þj is the Jacobian. The numerical values of the Gaussian
weights wi and abscissa ðevki; eliÞ are given in the Appendix. Once the bmk are known, the coefficients ak can
be obtained by solving (34), e.g. using the Gaussian elimination method. Substituting the coefficients into
(33), we obtain the pointwise reconstruction formula for f ðvk; lÞ. In addition, the pointwise derivatives fvk
and fl, needed for flux evaluations, follow directly,
fvk ¼
Xn

ik¼1

Xn�ik

jk¼0

ikakvik�1
k ljk ; f l ¼

Xn

ik¼0

Xn�ik

jk¼1

jkakvik
k l

jk�1: ð39Þ
To integrate the fluxes across a cell edge, we use fourth-order Gaussian quadrature. For example, given the
fluxes Cp ¼ ~C �~n at three Gaussian points on an edge, the flux across the edge is obtained by (after mapping
the edge into domain ½�1; 1�)
Z

l
Cdl ¼

X2

p¼0

cpCp ¼
l
2

X2

p¼0

cpCð~xpÞ; ð40Þ
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here l is the length of the edge, cp ¼ f5=9; 8=9; 5=9g are the weights, and ~xp ¼ f�
ffiffiffiffiffi
15
p

=5; 0;
ffiffiffiffiffi
15
p

=5g are the
Gaussian abscissa on ½�1; 1�.

Since each interior cell edge belongs to two neighboring cells, the flux across it can be computed from either
cell. To have a conservative scheme, a unique definition of the flux must be used. Here we use an upwind
approach, that is, assuming edge pq is shared by cell p and q, the flux F is chosen according to
C ¼
R

Cpq � npq dl if
R

Cpq � npq dl > 0;R
Cqp � nqp dl otherwise:

(
ð41Þ
Here Cpq and Cqp are the computed point-wise fluxes from cell p to cell q and vice versa, and npq is the unit
normal of edge pq pointing from p to q.

We note a few features of this reconstruction method: (1) unlike in the conventional finite-volume method,
the current reconstruction need not specify the location of �f i, which is only associated with a cell. (2) The met-
ric information of each cell is included automatically in the base polynomial through bmk. So the reconstruc-
tion applies equally to structured or unstructured meshes with arbitrary cell shapes, and (3) once the bmk are
computed initially for each cell, forming the matrix Bmk becomes very simple because all its elements ðbmkÞ are
known.

A properly chosen stencil is important to the reconstruction algorithm. The minimum requirement is that
the resulting matrix Bmk should be invertible and well-conditioned. In practice, the stencil for a particular cell
should form a simply-connected domain in the neighborhood of this cell and have sufficient support in both
directions to avoid a singularity in the resulting matrix. Since the FPO is a convection–diffusion operator in
velocity space, we may also take into account the direction of the edge fluxes in forming the stencil. This will
be discussed further in the context of constants-of-motion coordinates.

4. Constants-of-motion coordinates

Since the reconstruction scheme does not require the mesh to be regular or structured, the present algorithm
can be applied to the case where the ðvk; lÞ mesh is mapped from another mesh in a different velocity coordi-
nate system.

One choice of velocity space coordinates for the gyrokinetic plasma simulations, as noted in Section 1, is the
total energy E and the magnetic moment l. In the absence of collisions, E and l are conserved along particle
orbits in the equilibrium (time-independent) fields. So for the Vlasov equation, the numerical approximation
of the spatial derivative is effectively decoupled from the velocity space operation. This prevents the spatial
approximation from introducing numerical diffusion into velocity space and is a particularly good choice
for accurately calculating particle orbits [12]. An example of a regular ðl;EÞ mesh is shown in Fig. 1a, where
the boundary vk ¼ 0 is a straight line cutting through the grid and separating the physical zone (above, v2

k > 0)
from a non-physical zone (below, v2

k < 0).
Fig. 1. Velocity space represented in ðl;EÞ and the corresponding ðvk; lÞ coordinates.
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Existing FPOs typically are not written in constants-of-motion coordinates, so to compute particle collisions,
we adopt the following strategy. First, we employ a cell cutting and merging technique (described below) to treat
the cells being cut by the vk ¼ 0 boundary. This procedure avoids arbitrarily small cut cells that can limit the time
step size by the CFL constraint. Then, the resulting ðl;EÞ grid is mapped into ðvk; lÞ space, and the finite volume
algorithm described in Section 3 is applied. The resulting cut cell may have various shapes and different connec-
tivity patterns. For instance, Fig. 1b shows the corresponding ðvk; lÞmesh mapped directly from the ðl;EÞmesh
in Fig. 1a. Note that the vk ¼ 0 boundary now becomes the vertical axis about which the mesh is symmetric. The
left- and right-half planes correspond to particles with different signs of the parallel velocity.

4.1. Cell merging and mapping

The cell cutting and merging procedure starts by computing the cell center of the regular background ðl;EÞ
grid. If the center of a cell is above the vk ¼ 0 boundary (physical domain), this cell will be retained. Otherwise,
the cell will be discarded. If part of the cell that is discarded is in the physical zone, this part is merged into its
neighboring cells. Following Ye et al. [14], we choose to merge cells in the E direction. Since the vk ¼ 0 bound-
ary is a straight line, there are a total of four different types of cut cells as shown in Fig. 2. Note that depending
on the slope of the vk ¼ 0 boundary, i.e., the local B field, there could be no neighboring cells available in the E
direction at the upper-right corner. In such cases, we merge the cut cells in l direction. So the last such cell in
Fig. 2 can appear only at the upper right corner with highest values of E and l. As a result of merging, some of
the cut-cell edges may be shared by more than one neighboring cell (see Fig. 1a). When summing the edge
fluxes for this cell, contributions from different neighboring cells must be accounted for appropriately.

The mapping between ðl;EÞ and ðvk; lÞ coordinates is
Fig. 2.
merged
vk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � lB� qU

p
; ð42Þ
where B is the magnetic field, and U is the electric potential. The variable l itself is unchanged but now be-
comes the second coordinate in (vk; lÞ. Through this mapping, each ðl;EÞ cell (cut or regular cell) will be
mapped into two symmetric ðvk; lÞ cells with opposite signs of vk. Because the mapping is analytic, particle
conservation holds in both coordinates. In (42), a straight cell boundary of constant E is not mapped strictly
into a straight line boundary in ðvk; lÞ; this poses no problem, as we only need to map the vertices of a cell. The
initialization of �f , as well as the ensuing computations, are carried out in ðvk; lÞ space. This procedure is equiv-
alent to changing the cell boundary in ðl;EÞ to a slightly curved line such that when mapped to ðvk; lÞ, it be-
comes straight line. Note that the change of the cell shape in ðl;EÞ only negligibly affects the advection scheme
in the equilibrium fields of physical space, because each particle orbit in physical space, is represented by a
fixed point in ðl;EÞ space. Thus, the same collisional effects on the particle’s orbit can be computed by FPOs
using slightly different cells surrounding the same fixed point. One might also imagine applying the finite vol-
ume method directly in ðl;EÞ coordinates. However near the turning point boundary vk ¼ 0, it is difficult for
the reconstruction to include cells on the other sheet. With ðvk; lÞ coordinates, there is no multi-sheet problem,
and the reconstruction at the turning point boundary is the same as anywhere else.

4.2. Reconstruction stencil

As mentioned earlier, the fourth-order reconstruction scheme requires a 15-cell stencil. Since the FPO rep-
resents convection and diffusion in velocity space, and the direction of the edge fluxes is not known a priori, we
choose the stencil nearly centered on the cell on which the reconstruction is sought.
Computational cells in ðl;EÞ coordinates. (a) is a regular cell and (b–e) are cut cells at vk ¼ 0 boundary. (b) and (e) have been
with neighboring cells. (e) only appears at the corner of highest E and l.
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Since each cell in ðl;EÞ corresponds to two cells in ðvk; lÞ, to make the notation clear, we may describe the
stencil using ðl;EÞ cells that are Cartesian except near the vk ¼ 0 boundary.

Each cell, regular or cut (with merging), has one and only one cell center. These centers are the cell centers
of the background grid; for the cut cells, they are typically not the geometric centers. Nevertheless, the cell
center index serves as a unique label for each cell. The cell where the reconstruction is sought is given index
ði; jÞ. Then corresponding to Fig. 3, besides cell ði; jÞ, the base stencil consists of 14 cells with the index shift
shown in Table 1.

In Fig. 3, such a stencil is shown in both coordinates where all the cells in this stencil belong to the same vk
sheet in ðl;EÞ. The numbers marked on the cells in ðl;EÞ and ðvk; lÞ coordinates show the mapping. In Fig. 4,
a stencil with its center cell close to the turning point boundary is shown. Near the turning point boundary,
some cells in the stencil are not available because the index shift places them in the non-physical zone ðv2

k < 0Þ.
This means that the relevant cells are on the other sheet, i.e., the adjacent plane with the opposite sign of vk
axis in ðvk; lÞ space. The numbers in the parentheses designate such cells on the other sheet with the same
ðl;EÞ indices that need to be included in the stencil.

In general, the stencil need not be static; its composition can change with time according to the direction of
the local flux. Examples in one-dimensional systems include upwind, TVD, and ENO/WENO schemes.
Fig. 3. A 15-cell stencil in (a) the ðl;EÞ coordinates and (b) the corresponding ðvk;lÞ coordinates. This stencil does not cross the cut-cell
boundary, and only part of the corresponding cells in ðvk;lÞ coordinates are marked.

Table 1
Index shifts relative to cell ði; jÞ in a 15-cell stencil

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dik �2 �1 �1 0 0 0 0 0 1 1 1 2 2 �1
Djk 0 1 0 2 1 �1 �1 �2 1 0 �1 0 1 �2

Fig. 4. A 15-cell stencil in the (a) ðl;EÞ and (b) corresponding ðvk; lÞ coordinates. This stencil crosses cut-cell boundary, and the
overlapping cells are marked in both coordinates.



Fig. 5. Dynamic upwind stencil consisting of 15 cells in ðl;EÞ coordinates. The arrows indicate the direction of the net edge fluxes of cell 0.
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Although for a multi-dimensional system a complete theory is still lacking, in practice there are ways to incor-
porate a dynamic stencil. For instance, a slight variation of the above static stencil can be made to form a
stencil with a certain degree of upwinding. The idea is to keep the maximum extension of the stencil in
ðl;EÞ directions the same, but choose the last two cells, 13 and 14, based on the direction of the edge fluxes
of cell 0. Hence, the index shift of the cell 13 and 14 can be determined by
Di13 ¼
�2 if CE > 0

2 otherwise;

�
and Dj14 ¼

�2 if Cl > 0

2 otherwise:

�
ð43Þ
Here CE and Cl are the net fluxes through the edge of the cell 0, which are obtained at the previous time step.
In Fig. 5, two examples are shown for the location of cells 13 and 14 based on the sign of CE and Cl. The
dynamic stencil can adjust itself to be biased towards the upwind direction of the edge fluxes, such that it offers
better numerical stability and robustness compared to a static stencil.

To use the stencil near a boundary, ghost cells are needed. At the top boundary E ¼ Emax, we add two more
rows of ghost cells and specify their values by assuming the distribution function decays exponentially in the E
direction. Similarly, at l ¼ 0 boundary, we add two more columns of cells and assign their cell-averaged val-
ues by linear extrapolation based on three interior neighboring cells.

After merging the cut-cells and mapping the stencils, the FPO in constant-of-motion coordinates can now
be evaluated directly in the ðvk; lÞ coordinates.

5. Numerical tests

5.1. Reconstruction accuracy

To test the accuracy of the reconstruction scheme, we choose a drifting Maxwellian with normalized unit
density and mean temperature. The normalized drift velocity is vm ¼ 0:1. The upper grid boundaries of veloc-
ity space are set at Emax ¼ lmax ¼ 16, and the magnetic field is B ¼ 1:2. Here for the cells close to l ¼ 0, a
biased stencil made of only interior cells is used, and the flux crossing the l ¼ 0 boundary is set to zero. Given
the initial cell-averaged distribution function �f , we compute the values of f at cell corners, the mean drift
velocity and the mean temperature using the reconstruction scheme. The last two correspond to the first
and second moments of the distribution function f . The averaged pointwise reconstruction errors at different
grid resolutions are summarized in Table 2. The error of the function values at the cell corners confirms the
fourth-order accuracy of the reconstruction scheme. The errors of the mean velocity and temperature decrease
even faster than that of the distribution function itself due to the integral effects in moment calculation, but the
convergence rate is less consistent. Moreover, the accuracy of the reconstruction scheme is also important for
determining the numerical conservation of the particle’s energy. Unlike density, the particle’s energy is not
perfectly conserved in finite volume methods. To test numerical energy conservation, a nonlinear self-collision
of a drifting Maxwellian was computed using the current FPO with the Trubnikov–Rosenbluth potentials sup-
plied by the collision package CQL. It is found that the change of the mean energy after three collision times is
less than 0.2% [15]. So the fourth-order reconstruction scheme also enables accurate numerical energy conser-
vation for practical purposes.



Table 2
Mean pointwise errors of reconstruction for a normalized drift Maxwellian

Nl � NE
1
N

PN
i¼0jfi � fMj 1

N jU � UMj 1
N jT � T Mj

20� 20 5:8594� 10�4 3:5225� 10�6 3:6900� 10�5

40� 40 3:7685� 10�5 1:8083� 10�7 5:6541� 10�7

80� 80 2:5080� 10�6 5:5365� 10�9 6:9256� 10�9

160� 160 1:7617� 10�7 1:6416� 10�10 2:8535� 10�10

The columns are grid resolution, values at the cell corners, the mean drift velocity U , and the mean temperature T . Upper velocity space
boundaries are at Emax ¼ lmax ¼ 16 and the magnetic field B ¼ 1:2.
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5.2. Thermalization of a test distribution function

We test the linear FP collision operator on the thermalization problem, which describes the thermal relax-
ation rate of a computed species a on a background fixed Maxwellian species b [13]. Assuming the distribution
of a particles also remains Maxwellian during the relaxation, the theoretical rate of temperature change for
species a is given by
Fig. 6.
is Max
dT a

dt
¼ � 8ma

3mb
ffiffiffi
p
p T a � T b

sa=bðT a þ ma
mb

T bÞ
: ð44Þ
Here sa=b is the basic relaxation time defined by
sa=bð�Þ ¼
ffiffiffiffiffiffi
ma
p

p
ffiffiffi
2
p

e2
ae2

b

�3=2

Kcnb
: ð45Þ
The time dependent FPO equation in ðl;EÞ space is solved using a standard fourth-order Runge–Kutta
scheme. The background temperature can be either higher (heating) or lower (cooling) than the initial test par-
ticle temperature. The physical parameters are chosen as follows: ma ¼ mb ¼ 2mp, ea ¼ eb ¼ e, where mp is the
proton mass, and e the magnitude of the electron charge. The density of the background distribution is
nb ¼ 1014 cm�3, and the Coulomb logarithm is chosen to be Kc ¼ 16. The initial energy of the test particles
is set at 1.5 keV. The energy of the background particles is set at 2.25 keV for heating case, and 1.125 keV
for cooling case.

Figs. 6 and 7 show the time history of the mean energy of the test species during heating and cooling with
different grid resolutions. The density is conserved, and the momentum remains zero during the process. The
mean energy evolution at different resolutions shows the convergence to the field particle energy. It can be seen
the initial development follows the analytic curve very closely, because the test distribution is initialized as a
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Maxwellian. As the collision evolves, the relaxation rate starts to deviate from the analytic curve. This is
because particles with different energies have different collision rates, with higher energies relaxing more
slowly, and as a result the distribution of the test particles is no longer a Maxwellian during the relaxation
process [16]. Close to the thermal equilibrium, however, the numerical curve follows the theory again, because
the distribution function has returned to a Maxwellian with a mean energy close to that of the background
particles. The time history for the cooling case shows a similar progression.

5.3. Return to isotropy from loss cone distribution

In this section we examine the relaxation to Maxwellian due to collision effects for test particles with a ini-
tial loss cone in the velocity space. Loss cone situations are common in magnetized-plasma confinement exper-
iments, e.g. the edge plasma of a toroidal magnetic-fusion device or in an open-ended magnetic-mirror device.
In such cases, particles located in a certain part of the velocity space escape to material walls, leaving behind a
velocity-space region with no particles inside. This region is often called a loss cone. In the presence of colli-
sions, however, particles located in other parts of velocity space will be scattered into the loss cone. If we imag-
ine confining such a plasma and preventing loss to material walls, the loss cone will gradually fill up. This
collisional process is termed return-to-isotropy, and the distribution function for the test particles eventually
recovers a Maxwellian form.
Fig. 8. (a) Loss cone in ðl;EÞ velocity space, (b) distribution function f as a function of lB=T for at a fixed energy E=T ¼ 2:387 during the
filling of the loss cone. The normalized times (by the basic relaxation time s) for the curves 0–6 are t=s ¼
0; 0:027; 0:135; 0:27; 0:675; 1:35; 2:7.
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Fig. 8a shows a typical loss cone in velocity space for purely magnetic mirror trapping. In this case the
loss cone boundary is a straight line in ðl;EÞ space whose slope is set by the maximum of the B field. The
parameters chosen for the loss cone problem are as follows: The slopes of the loss cone and the vk ¼ 0
boundaries are Bmax ¼ 2:0 and Bmin ¼ 1:2. The initial condition for the distribution function f is a Maxwell-
ian at T a ¼ 1 but with the loss cone region set to zero. The initial normalized density is thus 0.6991 instead
of unity. Both the test and background particles have twice the proton mass and unit charge. The back-
ground temperature is T b ¼ 1. The grid resolution is N l ¼ 50 and N E ¼ 45, the number of mesh points
in ðl;EÞ, respectively. Let T 0 ¼ 1 keV be the reference temperature, the magnetic moment is normalized
by T 0=Bmin, and the normalized energy is E=T 0. Fig. 8b shows f as a function of l at a fixed
E=T 0 ¼ 2:387 at different times of the loss-cone filling. Time is normalized as before by the initial basic
relaxation time s. Starting from a step function at time t ¼ 0, the loss cone (left) is gradually filled by par-
ticles from the trapped region (right), so the increase of f in the loss cone is accompanied by the decrease of
f in the trapped region. Eventually, the loss cone is completely filled, and f is relaxed to a Maxwellian inde-
pendent of l, as shown by the curve 6 in 8b.

6. Summary and discussion

In this paper, a new fourth-order finite-volume algorithm is developed for the Fokker–Planck collision
operator (FPO) for highly magnetized plasmas. The velocity-space coordinates are chosen to be the parallel
velocity vk and magnetic moment l. Based on two-dimensional Gaussian quadrature, the finite-volume recon-
struction scheme can be applied to arbitrary unstructured meshes in ðvk; lÞ coordinates, including those gen-
erated by directly mapping a mesh from another set of coordinates. The numerical FPO conserves the particle
density to roundoff error, and the momentum and energy to fourth-order accuracy.

As an application, we compute the linearized collision operator in constants-of-motion coordinates ðl;EÞ.
A cell cutting and merging method is employed at the turning point boundary, and the resulting mesh is
mapped into ðvk; lÞ coordinates analytically. A 15-cell stencil is devised for the reconstruction scheme, and
the fluxes are evaluated using fourth-order Gaussian quadrature. The numerical accuracy of the reconstruc-
tion scheme is verified using a drifting Maxwellian. The FPO is used to compute the thermalization of a test
distribution with a fixed Maxellian background, for both heating and cooling cases, and the return to isotropy
of an initial distribution function with an empty loss cone. The numerical results agree well with theoretical
predictions.

Note that for spatially non-homogeneous magnetic fields, although the present FPO alone is fourth-order
accurate and number-conserving in velocity space, with the addition of convection in physical space via the
spatial-orbit portion of the kinetic equation, it is non-trivial to maintain the same accuracy and conservation
for the whole numerical algorithm. This difficulty is partially due to the fact that the size and shape of the cut-
cells at the vk ¼ 0 boundary change along the particle orbits, which presents a challenge for spatial convection
schemes. In addition, the coupling in velocity space at different spatial points, due to parallel streaming and
radial drift, makes the reconstruction scheme in velocity space susceptible to truncation errors in physical
space. The most suitable choice of discretization schemes for convection, e.g. finite difference versus finite vol-
ume, and the best choice of velocity coordinates, to achieve overall optimal accuracy and conservation in cou-
pling Vlasov solvers with the FPO, is a subject for future research.

The present method may be extended in several ways. Firstly, the reconstruction scheme is not specific to
velocity space; it can be applied to configuration space as well. Secondly, though focused on the linear FPO in
this paper, the algorithm is directly applicable to a fully nonlinear collision operator once the Trubnikov–
Rosenbluth potentials are calculated. Lastly, the reconstruction scheme can be readily generalized to three
dimensions.
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Table 3
Abscissa and weights of fourth-order Gaussian quadrature on a standard triangle

i wi ~xi ~yi

0 0.144315607677787 0.333333333333333 0.333333333333333
1 0.095091634267285 0.081414823414554 0.459292588292723
2 0.095091634267285 0.459292588292723 0.081414823414554
3 0.095091634267285 0.459292588292723 0.459292588292723
4 0.103217370534718 0.658861384496480 0.170569307751760
5 0.103217370534718 0.170569307751760 0.658861384496480
6 0.103217370534718 0.170569307751760 0.658861384496480
7 0.032458497623198 0.898905543365938 0.050547228317031
8 0.032458497623198 0.050547228317031 0.898905543365938
9 0.032458497623198 0.050547228317031 0.050547228317031

10 0.027230314174435 0.008394777409958 0.263112829634638
11 0.027230314174435 0.008394777409958 0.728492392955404
12 0.027230314174435 0.263112829634638 0.008394777409958
13 0.027230314174435 0.263112829634638 0.728492392955404
14 0.027230314174435 0.728492392955404 0.008394777409958
15 0.027230314174435 0.728492392955404 0.263112829634638
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Appendix A. Gaussian quadrature

The fourth-order Gaussian quadrature on the standard triangle M ¼ fð0; 0Þ; ð0; 1Þ; ð1; 0Þg is given by
Z
M

f ð~x; ~yÞd~xd~y ¼
X15

i¼0

wif ð~xi; ~yiÞ; ð46Þ
where the standard abscissa and weights are given in Table 3.
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